50 research outputs found

    R3^3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context

    Full text link
    With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R3^3 prompting, for CoT reasoning under noisy context. Specifically, R3^3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R3^3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R3^3 prompting method in solving reasoning tasks in LLMs under noisy context

    Semi-automatically aligned tilt images in electron tomography

    Get PDF
    In electron microscope tomography, alignment of tilt series images is a major determinant of resolution in 3D reconstructions. One alignment method uses gold beads deposited on or in the specimen as fiducial markers. We have developed software to semi-automatically align tilt series images. It runs two processes iteratively: (1) Marker picking. In this process, it uses a cross-correlation function to determine the shift between tilt images and predicts marker coordinates. Subsequently it refines them in a local search area, and detects and corrects erroneously picked markers automatically. The coordinates of the picked markers are used to align the images. (2) Image alignment. In this process, it uses a least squares method to estimate image rotation, image shift, and image scale factor

    EO-1 Data Quality and Sensor Stability with Changing Orbital Precession at the End of a 16 Year Mission

    Get PDF
    The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellites planned life expectancy. EO-1s primary instruments are spectral imagers: Hyperion, the only civilian full spectrum spectrometer (430-2400 nm) in orbit; and the Advanced Land Imager (ALI), the prototype for Landsat-8s pushbroom imaging technology. Both Hyperion and ALI instruments have continued to perform well, but in February 2011 the satellite ran out of the fuel necessary to maintain orbit, which initiated a change in precession rate that led to increasingly earlier equatorial crossing times during its last five years. The change from EO-1s original orbit, when it was formation flying with Landsat-7 at a 10:01am equatorial overpass time, to earlier overpass times results in image acquisitions with increasing solar zenith angles (SZAs). In this study, we take several approaches to characterize data quality as SZAs increased. Our results show that for both EO-1 sensors, atmospherically corrected reflectance products are within 5 to 10 of mean pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 2016, and these data remain a high quality resource through the end of the mission

    Characterizing and Understanding Development of Social Computing Through DBLP : A Data-Driven Analysis

    Get PDF
    During the past decades, the term 'social computing' has become a promising interdisciplinary area in the intersection of computer science and social science. In this work, we conduct a data-driven study to understand the development of social computing using the data collected from Digital Bibliography and Library Project (DBLP), a representative computer science bibliography website. We have observed a series of trends in the development of social computing, including the evolution of the number of publications, popular keywords, top venues, international collaborations, and research topics. Our findings will be helpful for researchers and practitioners working in relevant fields.publishedVersionPeer reviewe

    A quantitative proteomic analysis of the molecular mechanism underlying fertility conversion in thermo-sensitive genetic male sterility line AnnongS-1

    No full text
    Abstract Background Thermo-sensitive genetic male sterile (TGMS) lines have been widely used in two-line hybrid rice breeding. The two-line hybrids have increased rice yields substantially. However, the effect of environmental temperatures on the fertility conversion is still not fully clear. In this study, we performed a tandem mass tag (TMT)-based proteomic analysis on the anthers of the TGMS line AnnongS-1 grown under permissive (low) temperature (21 °C) and restrictive (high) temperature (> 26 °C) conditions in an attempt to explore the effect of temperature on the fertility of the male sterile line. Results After the AnnongS-1 plants were induced under either permissive or restrictive conditions, morphological observations and I2-KI staining confirmed that the pollen grains formed under high temperature conditions were abortive while those formed under low temperature developed normally. In comparison to the plants grown under permissive conditions, the restrictive high-temperature conditions led to the differential accumulation of 89 proteins in the anthers, of which 46 were increased in abundance and 43 were decreased in abundance. Most of the subcellular compartments of the anther cells had one or more proteins that had been differentially accumulated, with the cytoplasm and chloroplast having the greatest accumulations. More than 40% of the differentially abundant proteins (DAPs) were enzymes involved in photosynthesis, energy metabolism, biosynthesis and catabolism of cellular components, metabolic regulation, defense and stress, etc. The DAPs related to protein metabolism accounted for the largest proportion (21.35%), followed by those related to defense and stress (12.36%), metabolic regulation (10.11%) and carbohydrate metabolism (8.99%), indicating that such biological processes in anther cells were more susceptible to high temperature stress. Conclusions The restrictive temperature induction caused fertility-sterility conversion in the TGMS line AnnongS-1 mainly by adversely affecting the metabolism of protein, carbohydrate and energy, and decreasing the abundances of important proteins closely related to defense and stress, thereby impeding the growth and development of the pollen and weakening the overall defense and ability to endure stress of AnnongS-1. These data are helpful for deepening our understanding of the molecular mechanism underlying fertility conversion in TGMS lines

    The Effects of Selenium on Rumen Fermentation Parameters and Microbial Metagenome in Goats

    No full text
    This study evaluated the effects of selenium yeast (SY) on rumen fermentation parameters, rumen bacterial diversity, and expression pathways in goats. A total of 18 Qianbei-pockmarked weather goats from Guizhou (body weight, 25.75 ± 1.75 kg; mean ± standard deviation) were assigned to three groups according to a completely randomized design. Control group (CON, n = 6) kids were fed a basal diet, while treatment 1 (LS, n = 6) and treatment 2 (HS, n = 6) kids were fed a basal diet with 2.4 and 4.8 mg/kg SY, respectively. The feeding trial lasted for 74 days. The results indicated that the ruminal fluid of LS goats had significantly higher levels of propionic, caproic, isobutyric, and isovaleric acids than that of the CON. The levels of butyric and valeric acids were higher in the HS group than in the CON. The acetate:propionate ratio was significantly higher in the CON than in the two treatments. In addition, the inclusion of 2.4 mg/kg SY can lead to a significant decrease in the relative abundances of Euryarchaeota, and Proteobacteria at the phylum level compared to the CON and the HS groups. At the genus level, the LS group had a significant decrease in the relative abundance of Methanobrevibacter and Sarcina, whereas it could lead to a significant increase in the relative abundance of Clostridium in the ruminal fluid relative of the other two groups. At the species level, the LS group had a significant decrease in the relative abundance of bacterium_P3, bacterium_P201, and Sarcina_sp._DSM_11001 compared to the other groups. Moreover, the CON group had a significant decrease in the relative abundance of bacterium_P201 compared to the other two treatments. Compared to the CON, the addition of 2.4 mg/kg SY significantly enriched carbohydrate metabolism pathways in the ruminal fluid for gene encoding. Additionally, goats receiving SY showed a significant upregulation of glycosyl transferase and carbohydrate binding module pathways. These results suggest that dietary supplementation with SY modulates fermentation parameters, and it affects microbial diversity and microbial metagenome in the rumen of Qianbei-pockmarked goats

    The Effects of Selenium on Rumen Fermentation Parameters and Microbial Metagenome in Goats

    No full text
    This study evaluated the effects of selenium yeast (SY) on rumen fermentation parameters, rumen bacterial diversity, and expression pathways in goats. A total of 18 Qianbei-pockmarked weather goats from Guizhou (body weight, 25.75 ± 1.75 kg; mean ± standard deviation) were assigned to three groups according to a completely randomized design. Control group (CON, n = 6) kids were fed a basal diet, while treatment 1 (LS, n = 6) and treatment 2 (HS, n = 6) kids were fed a basal diet with 2.4 and 4.8 mg/kg SY, respectively. The feeding trial lasted for 74 days. The results indicated that the ruminal fluid of LS goats had significantly higher levels of propionic, caproic, isobutyric, and isovaleric acids than that of the CON. The levels of butyric and valeric acids were higher in the HS group than in the CON. The acetate:propionate ratio was significantly higher in the CON than in the two treatments. In addition, the inclusion of 2.4 mg/kg SY can lead to a significant decrease in the relative abundances of Euryarchaeota, and Proteobacteria at the phylum level compared to the CON and the HS groups. At the genus level, the LS group had a significant decrease in the relative abundance of Methanobrevibacter and Sarcina, whereas it could lead to a significant increase in the relative abundance of Clostridium in the ruminal fluid relative of the other two groups. At the species level, the LS group had a significant decrease in the relative abundance of bacterium_P3, bacterium_P201, and Sarcina_sp._DSM_11001 compared to the other groups. Moreover, the CON group had a significant decrease in the relative abundance of bacterium_P201 compared to the other two treatments. Compared to the CON, the addition of 2.4 mg/kg SY significantly enriched carbohydrate metabolism pathways in the ruminal fluid for gene encoding. Additionally, goats receiving SY showed a significant upregulation of glycosyl transferase and carbohydrate binding module pathways. These results suggest that dietary supplementation with SY modulates fermentation parameters, and it affects microbial diversity and microbial metagenome in the rumen of Qianbei-pockmarked goats

    The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens

    No full text
    This study investigated the effects of dietary supplementation with different levels of purple corn pigment (PCP) on the growth performance, blood biochemical indices, meat quality, muscle amino acids, and fatty acids of growing chickens. A total of 288 (8 weeks of age) growing Chishui black-bone chickens (body weight, 940 ± 80 g; mean ± standard deviation) were randomly divided into 4 groups using a completely randomized design. The four diet groups were as follows: (1) control, basal diet; (2) treatment 1, treatment 2, and treatment 3, which were basal diet with 80, 160, and 240 mg/kg PCP, respectively. The results showed that compared with the control group, the feeding of anthocyanins significantly (p < 0.05) increased the average daily feed intake and average daily gain in chickens. Moreover, chickens receiving 80 mg/kg PCP significantly increased (p < 0.05) plasma total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, high-density lipoprotein cholesterol, and albumin concentrations relative to the control group. For meat quality, dietary supplementation with PCP significantly (p < 0.05) reduced the drip loss and water loss rate in breast muscle. Additionally, chickens receiving PCP tended to increase (p < 0.05) the levels of most individual amino acids, essential amino acids, and umami amino acids in the muscle. Specifically, the addition of 80 mg/kg PCP significantly improved (p < 0.05) total polyunsaturated fatty acids in chicken muscle. Accordingly, the consumption of anthocyanin-rich PCP by the growing chickens had the potential to increase the growth performance, enhance antioxidant and immune capacities, increase meat quality, and improve essential and umami amino acids as well as unsaturated fatty acids in the muscle
    corecore